Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Am J Respir Cell Mol Biol ; 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2237558

ABSTRACT

Progressive fibrosing interstitial lung diseases (PF-ILDs) result in high mortality and lack effective therapies. The pathogenesis of PF-ILDs involves macrophages driving inflammation and irreversible fibrosis. Fc-gamma receptors (FcγRs) regulate macrophages and inflammation, but their roles in PF-ILDs remain unclear. We characterized the expression of FcγRs and found up-regulated FcγRIIB in human and mouse lungs following exposure to silica. FcγRIIB deficiency aggravated lung dysfunction, inflammation and fibrosis in silica-exposed mice. Using single-cell transcriptomics and in vitro experiments, FcγRIIB was found in alveolar macrophages, where it regulated the expression of fibrosis-related genes Spp1 and Ctss. In mice with macrophage-specific over-expression of FcγRIIB, and in mice treated with adenovirus by intra-tracheal instillation to up-regulate FcγRIIB, silica-induced functional and histological changes were ameliorated. Our data from three genetic models and a therapeutic model suggest that FcγRIIB plays a protective role that can be enhanced by adenoviral over-expression, representing a potential therapeutic strategy for PF-ILDs.

2.
Nat Commun ; 13(1): 2391, 2022 05 02.
Article in English | MEDLINE | ID: covidwho-1890171

ABSTRACT

COVID-19 has infected more than 275 million worldwide (at the beginning of 2022). Children appear less susceptible to COVID-19 and present with milder symptoms. Cases of children with COVID-19 developing clinical features of Kawasaki-disease have been described. Here we utilise Mass Spectrometry proteomics to determine the plasma proteins expressed in healthy children pre-pandemic, children with multisystem inflammatory syndrome (MIS-C) and children with COVID-19 induced ARDS. Pathway analyses were performed to determine the affected pathways. 76 proteins are differentially expressed across the groups, with 85 and 52 proteins specific to MIS-C and COVID-19 ARDS, respectively. Complement and coagulation activation are implicated in these clinical phenotypes, however there was significant contribution of FcGR and BCR activation in MIS-C and scavenging of haem and retinoid metabolism in COVID-19 ARDS. We show global proteomic differences in MIS-C and COVID-ARDS, although both show complement and coagulation dysregulation. The results contribute to our understanding of MIS-C and COVID-19 ARDS in children.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/complications , Complement System Proteins , Humans , Proteomics/methods , Systemic Inflammatory Response Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL